Face tracking using canonical correlation analysis

نویسندگان

  • José Alonso Ybáñez Zepeda
  • Franck Davoine
  • Maurice Charbit
چکیده

This paper presents an approach that incorporates canonical correlation analysis for monocular 3D face tracking as a rigid object. It also provides the comparison between the linear and the non linear version (kernel) of the CCA. The 3D pose of the face is estimated from observed raw brightness shape-free 2D image patches. A parameterized geometric face model is adopted to crop out and to normalize the shape of patches of interest from video frames. Starting from a face model fitted to an observed human face, the relation between a set of perturbed pose parameters of the face model and the associated image patches is learned using CCA or KCCA. This knowledge is then used to estimate the correction to be added to the pose of the face from an observed patch in the current frame. Experimental results on tracking faces in long video sequences show the effectiveness of the two proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Face Tracking and Gaze Estimation Using a Monocular Camera

Estimating a user’s gaze direction, one of the main novel user interaction technologies, will eventually be used for numerous applications where current methods are becoming less effective. In this paper, a new method is presented for estimating the gaze direction using Canonical Correlation Analysis (CCA), which finds a linear relationship between two datasets defining the face pose and the co...

متن کامل

Estimation of Face Depth Maps from Color Textures using Canonical Correlation Analysis

We propose a method for estimating face depth maps from color face images. The method is based on Canonical Correlation Analysis (CCA) which exploits the correlation between face color texture and surface depth. The results of experiments conducted on a database of 218 3D scans with corresponding color images show that only a small number of canonical factors are needed to describe the function...

متن کامل

Fusing Face and Periocular biometrics using Canonical correlation analysis

This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy ca...

متن کامل

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

IR and visible-light face recognition using canonical correlation analysis

This paper proposes a novel multispectral feature extraction method according to the idea of canonical correlation analysis (CCA). Instead of extracting two groups of features with the same pattern (modality) as usual, the work explores another type of application of CCA that for extracting most correlated features from different face modalities to form effective discriminant vectors for recogn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007